
Terrahedron Lerrers, Vol. 38, No. 13. pp. 2387-2390. 1997 
0 1997 Elsevier Science Ltd 

All rights reserved. Printed in Great Britain 

PII: SOO40-4039(97)00358-4 004~4039/97 $17.00 + 0.00 

Remote Asymmetric Induction in Reactions of 5-Alkoxyalk-2-enylsilanes and Aldehydes 
Promoted by Tin(IV) Chloride 

Christopher T. Brain and Eric J. Thomas* 

The Department of Chemistry, The University of Manchester, Manchester, Ml3 9PL, U.K. 

Abstract: Following observations on remote asymmetic induction using allylstannanes, 5-benzyloxy4 
methylpent-2-enylsilanes are also found to react with aldebydes with modest levels of l,%induction after 
treatment with tin(IV) chloride. Transmetallation to give intermediite ally& hihalides may be involved. 
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Alkoxy-substituted allylstannanes are transmetallatcd on treatment with tin(IV) halides to give allyltin 

trihalides which react with aldehydes with effective remote asymmetric induction.1 For example, the 5- 

benzyloxy-4-methylpent-2-enylstannane 1 gives predominantly the 1,5-anti-products 2 with useful levels of 

stereoselectivity, 2 : 3 2 95 : 5.2 We now report analogous reactions of allylsilanes.3 

i. SnCl4, 

-78 ‘C, 5 min. 
* BnOdFl + B”OdR 

Me ii. WHO, Me 

-78 ‘C, h 
595 

Me : 5 
1 0.5-I 2 3 

The allylsilanes 5.7 and 9, which are silyl analogues of the allylstannane 1, were prepared from o-3- 

benzyloxy-2-methylpropanal 4 following well-established procedures for allylsilane synthesis involving a 

Wittig condensation, a Julia reaction, and a silyl cuprate displacement of an ally1 acetate, as shown in the 

Scheme.4-7 In each case, mixtures of (.E)- and Q-isomers, ratio cu. 90( 15) : 10(85), were obtained and used 

directly. 
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Scheme /?eagents: i, Ph3PCMe Br-, BuLi, 1 h, ICH&Me3, 1 h, BuLi then add 4 136%: (2) : (E) = 85 : 151; 

ii, PhSOzCH$HfiiMe3, BuLi, 0.5 h, then MeSO& iii, discdium hydrogen phosphate, Na/Hg, MeOH [580/c 

from 4; (E) : (2) = 90 : lo]; iv, H&kCHMgCI, tetrahydrofuran. then acetic anhydride. triethytamine (76%); v, 

lithium wire, M+PhSiCI, copper(l) cyanide, tetrahydrofuran [96%, (E) : (2~ = 85 : 151. 
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Allowing 1 - 2 h for the reaction between the allylsilane and tin(W) chloride, the reactions of the (E)- 

allylsilane 7 and a range of aldehydes were studied, see Table, entries 5 - 9. Reasonable yields of the alkenols 

2a-d and 3a-d were obtained with modest diastereoselectivity in favour of the l&znti-products, a& : syn - 

72-82 : 28-18. The allyl(dimethyl)phenylsilane 9 gave similar results, entry 10, showing that the size of the 

groups on the silicon did not have a marked effect on the stereoselectivities of the reactions. 

It would appear that both the regio- and stereoselectivities observed for the tin(IV) halide promoted 

reactions of the allylstannane 1 with aldehydes are observed for the analogous allylsilanes 5,7, and 9. The 

stereoselectivity observed for the allylsilanes is less than that observed for the allylstannanes. The (Z)- 

allylsilane 5 would appear to react with benzaldehyde with slightly better stereoselectivity than its (Q-isomer 

7.85-86 : 15-14 c$ 72-73 : 28-27 (entries 2/3 and 5/6 in the Table). 

The formation of the unti-(Z)-alkenols 2 as the major products from these reactions is inconsistent with 

the tin(lV) chloride simply acting as a Lewis acid and promoting the reactions by co-ordination to the carbonyl 

oxygen of the aldehyde. This process would be expected to give rise to the formation of the regioisomeric 

terminal alkenols 10, which were only observed as minor products of the reactions. However, the formation of 

the internal alkenols 2 and 3 as the major products can be explained by transmetallation of the allylsilane by the 

tin(IV) chloride to generate the allyltin trichlorides 11 and 13.9 These would react with the aldehyde via the 

‘chair-like’ transition structures 12 and 14 to give the 1,5-anti-(Z)- and 1.5~syn-(Z)-alkenols 2 and 3, 

respectively.10 The preference for formation of (Z)-alkenes in reactions of co-ordinated allyltin trichlorides 

with aldehydes has been explained in terms of the stabilities of the initially formed medium-ring products.1 

-2 
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13 14 

The transmetallation of the allylsilanes would appear to be less stereoselective than transmetallation of 

the corresponding allylstannanes. However, since the allylsilane transmetallation is a much slower process, 

requiring 1 - 2 h at -78 Oc in comparison to the < 5 min required for transmetallation of the allylstannane, it is 

not clear whether the transmetallation of the allylsilane is intrinsically less stereoselective, or whether the 

intermediate allyltin trichlorides have time to interconvert under the conditions of their formation1 1 

Further work will be required to confirm the participation of the allyltin trichlorides 11 and 13 in these 

reactions. Nevertheless, the observation of remote asymmetric induction in reactions of allylsilanes and 

aldehydes is of interest and may be of use in synthesis since the allylsilanes are more accessible than the 

corresponding allylstannanes and their use avoids the problems associated in separating products from 

organotin residues. l2 
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